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Abstract

This paper studies how network structure can affect the speed of adoption.
In particular, we model the decision to adopt Python 3 by software packages.
Python 3 provides advanced features but is not backward compatible with Python
2, which implies adoption costs. Moreover, packages form dependency networks
through dependency relationships with other packages, and they face an addi-
tional adoption cost if the dependency packages lack Python 3 support. We
build a dynamic model of technology adoption that incorporates such a network
and estimate it using a complete dataset of Python packages. Estimation re-
sults show that the average cost of one incompatible dependency is roughly three
times the cost for updating one’s own code. We conduct several counterfactual
policies of targeted community-level promotion. The results show significant het-
erogeneous effects across communities and the role of the dependency network
changes as packages become more interlinked. Moreover, we find packages have
more incentive to free ride by delaying adoption if dependencies are more likely
to adopt.

∗Han: Concordia University and CIREQ, Montreal, Canada. Email: xintong.han@concordia.ca.
Xu: Queen’s University, Kingston, Canada. Email: lei.xu2@gmail.com. We thank Daron Acemoglu,
Victor Aguirregabiria, Luis Cabral, Allan Collard-Wexler, Jacques Cremer, Olivier De Groote, Pierre
Dubois, Isis Durrmeyer, Daniel Ershov, Ana Gazmuri, Matthew Gentry, Gautam Gowrisankaran,
Philip Haile, Chun-Yu Ho, Kim Huynh, Doh-Shin Jeon, Thierry Magnac, Ariel Pakes, Andrew Rhodes,
John Rust, Mario Samano, Paul Seabright, Oleksandr Shcherbakov, Elie Tamer, Robert Ulbricht,
Kevin Williams, as well as seminar and conference participants at TSE, Concordia, Edinburgh, Bank
of Canada, IE Business School, University of Toronto, and HKBU for helpful comments. Financial
support from TSE Digital Center and the NET Institute is gratefully acknowledged. All errors are
our own.

1



1 Introduction
Technological innovation has been one of the most important sources of productivity

and economic growth (DeLong (2002), Mansfield, Mettler and Packard (1980)), yet slow
technology adoption is still a common phenomenon in many sectors (Geroski (2000)).
This paper demonstrates how the speed of the adoption can be affected by dependency
networks and how targeted promotion policy can be used to facilitate a faster adoption
process in an dependency network.

We study this issue in the context of the Python programming language, in par-
ticular, the transition from Python version 2 to version 3.1 Python is one of the most
popular programming languages in the world. Python 3 was a major release in 2008
that experienced slow adoption.2 It provides several fundamental improvements but is
incompatible with Python 2.3 In other words, existing code written in Python 2 often
fails to work in Python 3, and vice versa.

Like other programming languages, most functionalities on Python are provided by
third-party packages. Packages are also known as libraries, (sub)routines, or modules
in other programming languages. These packages form dependency networks through
dependency requirements: downstream packages are built using functionalities pro-
vided by upstream packages, or upstream packages are dependencies for downstream
packages.4 To use a package, the end user must install the package itself, as well as all
of its upstream dependencies.5

Our research focuses on the decision to adopt Python 3 made by third-party pack-
ages. Deciding to adopt means updating the package to be compatible with Python 3.
To use the new features of Python 3, packages need to update their source code. More-
over, another major component of the adoption costs comes from the incompatibility
between Python 2 and 3. If any of their upstream dependencies have yet to adopt
Python 3, additional development efforts must be made; that is, a higher adoption
cost.6

Unlike other industries with dependency networks, there is no explicit pecuniary
compensation in open-source software (OSS) development and usage. This particular
feature allows us to focus on the pure impact of the network structure itself without the
complication when price is introduced. We model the utility of OSS as a function of
user downloads (Fershtman and Gandal (2011)). For any commonly known motivations
behind contributions to OSS (e.g., altruism, career incentives, ego gratification), more

1Similar issues exist in other software or programming languages, such as Windows dynamic-link
libraries (DLLs), Fortran, and Ruby. We study Python mainly due to data availability.

2The Python 3 adoption process has been widely considered slower than optimal.
3Refer to the Appendix for a list of new functionalities in Python 3 that are incompatible with

Python 2.
4The two terms “upstream” and “dependency” are used interchangeably throughout the paper.
5The installation system usually checks whether all dependencies have been installed. If not, it

automatically downloads and installs them first. Please see Section 2 for more information.
6Typical solutions (or costs) come from looking for alternative dependencies with Python 3 support

or updating the necessary components of the dependency in order to support Python 3.
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user downloads are always better for package developers.
To understand how network structure affects the dynamics of technology adoption,

we build a dynamic model in which each package makes an irreversible decision to
adopt Python 3, following Rust (1987), Keane and Wolpin (1997), and Aguirregabiria
and Mira (2010). Our model highlights an intertemporal trade-off: if a package adopts
early, it can receive more user downloads over time but pays a higher adoption cost;
if a package adopts later, the adoption cost may be lower due to the future adoption
decisions of its upstream dependencies.

The solution of the dynamic adoption model requires a prediction of future states
for a package itself and for each of its dependencies, as well as those of the dependencies
of dependencies, and so on. This has created significant computational challenges to
our estimation.

With a complete dataset of package characteristics, historical releases and user
download statistics, we draw the dependency network of packages.7 To deal with the
computational burden, we propose a novel estimation procedure that takes advan-
tage of the dependency relationship among packages. We group packages into various
layers based on the dependency network and calculate the adoption probability layer
by layer.Then we propose a novel maximum likelihood estimation (MLE) method to
estimate model parameters.

Results from the structural estimation show that upstream dependencies without
Python 3 support pose significant barriers in the adoption decisions of downstream
packages: the cost of adopting Python 3 with one dependency lacking Python 3 support
is equivalent to, on average, three times the cost of updating one’s own source code.

The Python programming language is managed by a non-for-profit organization
named Python Software Foundation (PSF). PSF oversees all the major issues related
to Python, including the transition from Python 2 to Python 3. To maintain a smooth
and rapid transition has been one of the top priorities of PSF, because such transition
to a new standard can be difficult and might lead to disastrous results if not well
managed.8

The structural model allows us to conduct counterfactual exercises of “sponsor-
ship.” A sponsor promotes the new technology, and can affect its future success (Katz
and Shapiro (1986)). We evaluate the effectiveness of policies such as community-level
targeted cost subsidies to adopt Python 3. We use modularity optimization tools devel-
oped in the social network literature to group the packages into various “communities”
based on the dependency network: for example, web development and data analy-
sis communities. These communities have very different network structures, which
also evolve over time. Packages are more densely linked within a community but less
so across different communities. Through counterfactual simulation, we show how

7Our data come from the Python Package Index project, which is the largest repository for Python
packages. It records historical download information for more than 150,000 packages from 2005 on-
ward.

8For example, in the case of the Perl programming language, the transition from Perl 5 to Perl 6
was widely considered as a failure and painful process for developers.
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technology adoption decisions can propagate through these connected communities.
Counterfactual results show that community-level targeted cost subsidies have large
heterogeneous effects on adoption rates due to differences in network structure within
a community. Moreover, subsidies in one community have significant positive or neg-
ative effects on connected communities. As more packages become available and are
more interlinked, the dependency network becomes a larger obstacle to the adoption
speed. We also explore the optimal policy to maximize the effectiveness of cost sub-
sidies to promote a faster Python 3 adoption. The findings imply that policies that
consider network structure can significantly improve the effectiveness of promotion.

This paper contributes to several literatures. It contributes to the literature of tech-
nology adoption by demonstrating a new channel through which the speed of adoption
can be affected. The rich literature on technology adoption shows that many factors
can slow the speed of adoptions; for example, organization (Atkin et al. (2017)), com-
petition (Gowrisankaran and Stavins (2004)), demand conditions (Macher, Miller and
Osborne (2020)), and network effects (Saloner and Shepard (1995)).9 To the best of
our knowledge, this paper is the first to measure such adverse effects of dependency
networks on technology adoption.

This paper also contributes to the emerging literature that links network analysis
and technology adoption. Previous papers on network effects study the topic using a
more “reduced-form” approach by modeling utility as a function of the total number of
users on the same network.10 Recent literature start to consider more detailed linkages
between individual agents on a network. Ryan and Tucker (2011) measures the hetero-
geneous network effects from adopting a video-calling technology within a company.
Compared to their study, our model allows for richer heterogeneity patterns across
individuals. Apart from differences in individual characteristics, we also consider the
detailed linkages among packages and allow them to discount future utilities differently.
By imposing a functional form, we use several package characteristics that can poten-
tially affect how package developers value future downloads to capture heterogeneity
in the discount factor. On the other hand, the literature of social networks has al-
ways considered the detailed linkages between individuals, but with limited dynamics.
Individuals in reality are inherently dynamic and face intertemporal trade-offs, and
failure to control for forward-looking agents can yield different estimation results and
may misguide policymakers (Rust (1987), Hendel and Nevo (2006), Gowrisankaran and
Rysman (2012)). Bjorkegren (2018) is one of the first attempts to model technology
adoption in a complex network and studies the adoption of mobile phones in Rwanda
through the calling network. Bjorkegren (2018) circumvents the complex dynamic
problem by solving per-period equilibria of optimal timing to adopt, and assumes that
each individual makes the adoption decision with full knowledge of the actual future
adoption time of her contacts. Our approach is based on the dynamic discrete choice

9For more examples, refer to the excellent surveys by Atkin et al. (2017), Hall and Khan (2003),
and Hall (2009).

10Early seminal work includes Farrell and Saloner (1985) and Katz and Shapiro (1986). A more
recent overview of the literature can be found in Cabral (2011)
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model. In this model, individuals decide whether or not to adopt a new technology in
the current time period, instead of when to adopt a new technology in a future time
period. Agents predict the future adoption probabilities based on the current states.
Our approach relaxes the perfect foresight assumption of other agents’ fugure adoption
decisions, though other simplifying assumptions are needed for the estimation.

Last, our research contributes to the growing marketing literature that evaluates
the impacts of network structure on peer decisions. Generally speaking, a major dif-
ference is the role of dynamics in modeling choices. Models of social networks tend
to have complex structures to explain the interaction among individuals but have lit-
tle dynamic component. With a relatively simpler network structure, our paper can
accommodate agents’ forward-looking behavior. Hu, Yang and Xu (2019) explores
the effects of social learning on wireless carrier decisions through a dynamic structure
model with interpersonal interactions. Max Wei (2020) studies how film producers
position their films to maximize box office receipts by comparing them to other net-
work peers through a network formation model. Similar to these two papers, we also
emphasize the importance of an agent’s “position” in their network. That is to say, an
agent occupying a centralized position has greater influence on peers on the network.
The main difference comes from the nature of the network studied. The dependency
network in our study is hierarchical in the sense that one agent relies on the decision of
another agent, but not the other way around. This feature allows us to model the rich
dynamics when an agent makes the adoption decision. In a more recent paper, Grewal,
Lilien and Mallapragada (2006) studied the herding effect of advertising expenditure
disclosure by peer firms and benchmark leaders in the network. Our paper provides an
alternative dynamic structural approach to evaluate the effects of decisions made by
other agents in the network.

2 Background: The Python Programming Language
Python is a general-purpose programming language.11 It has a syntax that allows

users to express concepts in fewer lines of code compared with most other major pro-
gramming languages, and has been widely used in introductory-level computer science
courses at universities. The first version was released in 1989 but did not gain popu-
larity until the late 2000s.12 In the past few years, Python has become one of the most
popular programming languages.13

Backward compatibility has been a widely disputed topic in the software industry.
11A general-purpose programming language is a computer language that is broadly applicable across

application domains. Examples of general-purpose programming languages include C, Java, and
Python. It is in contrast to domain-specific language, such as MATLAB (numerical computing),
Stata, and R (statistical analysis).

12There are no backward compatibility issues from Python 1 to Python 2.
13For example, based on the number of visits to questions related to a particular programming

language on Stack Overflow, the largest Q&A website for programming-related matters, Python has
grown to be number one since 2018.
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Figure 1: Popularity Trend of Programming Languages

In order to introduce several key features to Python, the core developers decided to
break the backward compatibility with the major release of Python 3 in 2008.14 The
trade-off is clear: easier user transition to new technology versus a higher cost of
development and slower innovation. Users and package developers who want to run
their code on Python 3 have to update all of the source code to be compatible with
Python 3.15

Most functionalities on Python are provided by third-party packages. In simple
terms, packages can be viewed as a collection of tools and functions that anyone can
use to work on more complicated tasks.16 Packages are also known as libraries, modules,
and (sub)routines in other programming languages.

Figure 2(a) plots the number of packages available on Python over time. The
exponential growth of packages is another indication that Python itself has gained

14Python core developers are a group of active contributors to the Python programming language,
which itself is an OSS. Some of the major new features of Python 3 include newer classes, Unicode
encoding, and float division. Please refer to http://python.org/ for more detailed information.
Several examples of incompatibility are shown in Appendix 10.1.

15Some packages are developed to help users to transition more easily to Python 3 through automa-
tion. However, in most cases, users and package developers still have to test and manually modify
much of the code.

16A more accurate description and definitions of packages can be found in the official Python
documentation at https://docs.python.org. Appendix 10.2 also provides a simple example to
show how a package is used.
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Figure 2: Python Packages with Python 3 Support

tremendous popularity over the past decade. Figure 2(b) plots the percentages of
packages with Python 3 support after its release in 2008. The transition process has
been longer than many expected, and a significant number of packages are reluctant to
provide Python 3 support. Those with Python 3 support usually provide two versions
for each release: one for Python 2 and another for Python 3. By the end of 2018,
roughly 82% of packages support Python 3.

Both the Python programming language and almost all the third-party packages
are OSS.17 The motivations for OSS contributions by software developers can be mul-
tifold.18 The literature of motivations behind private contributions to online public
goods suggests that the most common motivations are altruism, career concerns, and
ego gratification.

Packages usually specialize in a specific domain and often depend on other packages
for related functionalities. For example, NumPy is a package that specializes in certain
fundamental mathematical operations, such as matrix inversion and multiplication,
while SciPy provides more applied tools used in science, such as linear regression,
which requires the matrix operations from NumPy. In this case, SciPy depends on
NumPy, or NumPy is a dependency of SciPy. To use SciPy, the user has to install both
NumPy and SciPy. When installing a package, the system usually checks whether all
the dependencies have been properly installed, and, if not, it automatically downloads
and installs the dependency packages first.

Figure 3 shows a small section of the dependency network of Python packages. The
17Nearly all the Python packages in our study are open source, which are free of charge to anyone

to use. A limited number of packages offer free downloads but require payment for usage.
18von Krogh et al. (2012) and Xu, Nian and Cabral (2020) provide overviews of the literature.
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Figure 3: Sample Dependency Network of Python Packages

arrows represent the dependency relationship.19 For example, an arrow from NumPy
to SciPy means NumPy is the dependency of SciPy. In this case, we also refer to
NumPy as the upstream package to the downstream package SciPy.

3 Data
We collect data from the Python Package Index (PyPI), a repository of software for

the Python programming language. In other words, it is a website where all developers
upload their packages so that users can search for and download the packages they
need.

When uploading packages to PyPI, package developers usually provide various kinds
of information related to the files, such as the description of the package, the contact
information for the owners, whether they provide support for Python 2 or Python 3,
and what other packages are required as dependencies. 20

User downloads data consists of two separate sources recorded by PyPI. Before 2016,
cumulative download statistics for each file were recorded (Table 2(a)). The system
stopped working for a few months from January to May 2016, when PyPI introduced
a new system hosted on Google BigQuery. The new system records and publishes
certain information related to each individual download (Table 2(b)). We combine the

19In principle, the whole dependency network is acyclical. In other words, a circular dependency
relationship such as A → B → C → A is not supposed to exist. In the data, there exist a negligible
number of cases of circular dependencies (47 out of 90,551 links). We compare the characteristics of
all package pairs and manually remove the most “unlikely” link, measured by the number of times a
package is used as a dependency.

20In addition to the information provided by developers in the description section, we also infer
Python 2/3 support from filenames and extract dependency requirements directly from the source
files of each package.
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Table 1: Package Characteristics

name statsmodels
license BSD
summary Estimation and inference for statistical models
author Josef Perktold, Chad Fulton, Kerby Shedden
version 0.9
requires_dist numpy

pandas
matplotlib

classifiers Intended Audience :: Science/Research
Programming Language :: Python :: 2
Programming Language :: Python :: 3
Topic :: Scientific/Engineering

Table 2: Downloads Statistics

(a) Before 2016: Cumulative Download

upload_time 2014-12-02
python_version 3.4
downloads 41564
filename statsmodels-0.6.whl
size (bytes) 3969880

(b) After 2016: Individual Download

timestamp 2018-09-01
country_code FR
filename statsmodels-0.6.whl
project statsmodels
version 0.6
python 3.4
system Mac OS X
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two sources of user downloads data and extrapolate the number of downloads for the
missing time periods from January to May 2016. 21

Among the more than 150,000 packages hosted on PyPI (as of September 2018), the
vast majority are either abandoned or hobby projects for personal use. For example,
40% of all packages have only one or two releases. User downloads are concentrated
on a relatively few number of popular packages. In 2017, the top 100 packages account
for approximately 58% of all downloads, and the top 500 packages account for 79% of
all downloads. The long tail is persistent throughout all the years.

We focus on packages that are well maintained, with regular releases by selecting
packages based on the following criteria (values in parenthesis are the unconditional
percentage of packages that satisfy each measure):

• Time Duration (Last Release - First Release Date) ≥ 1 Year (12.9%)

• Downloads per Year ≥ 2000 (30.8%)

• Total Number of Releases ≥ 5 (38.9%)

• Total Releases / Time Duration ≥ 1 (92.4%)

• Some Python 2/3 Support Information Available (59.9%)

These selection criteria provide 3,397 packages for our analysis.
21Competing platforms to PyPI also exist. The most popular one is Anaconda. All packages on

Anaconda are also hosted on PyPI but the user downlaods data are not publicly available. Anecdotal
evidence indicate Anaconda holds a relatively small market share throughout our data period.
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Table 3: Summary Statistics

All Selected Dep ≥ 1

Number of packages 125521 3397 2143
Total downloads (in percentage) 100.00% 46.40% 22.32%
Average logged downloads 9.27 12.34 12.30

per package (min, max) (3.0, 20.5) (8.8, 20.5) (8.8, 19.7)
Average number of dependencies 0.07 2.27 3.60

(min, max) (0, 53) (0, 53) (1, 53)
Average logged package size 4.32 4.42 4.49

(KB) (min, max) (-2.1, 11.2) (-2.1, 11.2) (-0.2, 9.7)

Column “All”: all packages available on PyPI at the time of data collection (2018);
Column “Selected”: selected packages used for estimating the model; Column “Dep
≥ 1”: those with more than one dependencies among the selected packages.

Table 3 shows the summary statistics of several key variables between the whole
population and our selected sample. The selected sample includes the majority of the
most popular packages on Python, consisting of 46.40% of all of the downloads on
PyPI. The average number of downloads for each package in the selected sample is
also much higher than the whole population. On average, the selected sample has 2.27
dependencies versus 0.07 in the whole population. These packages are also larger in
terms of file sizes. Consistent with other figures in this section, Table 3 implies that
our analysis focuses on the well-maintained packages with regular releases that faced
an adoption decision of Python 3. These packages are also the most popular packages
in the Python community.

4 Model
Our model is based on the single-agent dynamic discrete choice framework devel-

oped by Rust (1987) and Keane and Wolpin (1997) to analyze technology adoption
decisions by Python packages. Each package i at time t can be described by a state
variable Si,t. Given the current state Si,t, each package i makes an irreversible decision
to adopt Python 3, namely, to make the package compatible with Python 3.2223 Let

22More examples and discussions of irreversible decisions can be found in Rust and Phelan (1997)
and Aguirregabiria and Mira (2010).

23One potential violation to model assumption is that some packages share the same set of contrib-
utors. In our data, 84.3% of package authors have 1 package, and 10.9% have 2 packages. We don’t
think this is a major concern that can significantly affect the model estimation.
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di,t be a binary irreversible decision:24

di,t =

{
1 if package i adopts Python 3 at time t

0 otherwise.
(1)

Packages are linked through dependency requirements. In order to incorporate the
dependency network of packages and how packages affect each other through their
adoption decisions, the state variable includes both one’s own characteristics as well
as those of dependencies. Thus, the (nested) state variables can be specified as the
following:

Si,t =

{
xi,t−1︸ ︷︷ ︸
user

downloads

, zi,t︸︷︷︸
other package
characteristics

, ϵ
di,t
i,t︸︷︷︸

i.i.d.
shocks

, di,t−1︸ ︷︷ ︸
previous

adoption decision

, {Sj,t, dj,t}j∈Ui,t︸ ︷︷ ︸
states and decisions

of dependencies

}
.

The dependency network among packages is incorporated in the last component
of the state variable. That is to say, the adoption decision of a package depends
on the decisions and states of all of its dependencies as well as the dependencies of
dependencies, etc. One implicit assumption embedded in this nested state variable is
a sequential move assumption, meaning that package i observes the adoption decision
made by its dependencies before making its own adoption decision. Section 4.3 provides
more discussion and implications of this assumption.

All adoption decisions are irreversible, meaning that in each time period t, only
packages without Python 3 support make the adoption decisions. The adoption decision
comes with a one-time adoption cost, and this affects the transition dynamics of the
state variable Si,t.

4.1 Value Function and Bellman Equation

Given the state Si,t, a package’s flow utility can be written as:

u(Si,t, di,t; θ)− C(Si,t, di,t; θ) + ν
di,t
i,t (2)

=u(Si,t, di,t; θ)− 1(di,t−1 = 0, di,t = 1)C(Si,t; θ) + ν
di,t
i,t ,

where u(Si,t, di,t; θ) is the reward function of the indirect utility, and C(Si,t; θ) is the
one-time cost to adopt Python 3.

The value function for packages without Python 3 support can be written as the
following dynamic problem:

Vθ(Si,t, di,t−1 = 0) (3)

24Given the irreversibility condition, we use di,t to represent both the adoption decision and status,
i.e. once a package adopts Python 3 at time t (di,t = 1), it always supports Python 3 in future periods
(di,t+τ = 1 ∀τ ∈ N).
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= max
{di,t+τ}∞τ=0

Et{
∞∑
τ=0

βτ
i

(
u(Si,t+τ , di,t+τ ; θ)−Di,t+τ C(Si,t+τ ; θ) + ν

di,t+τ

i,t+τ

)
|Si,t; θ},

where Di,t+τ = 1(di,t+τ−1 = 0, di,t+τ = 1).

The Bellman equation implies that at each period t, the ex ante value function,
conditional on di,t−1 = 0, can be represented by:

Vθ(Si,t, di,t−1 = 0) (4)

= max
di,t∈{0,1}

u(Si,t, di,t; θ)− di,t C(Si,t; θ) + ν
di,t
i,t + βiEtVθ(Si,t+1|Si,t, di,t)

=max{vθ(Si,t, di,t−1 = 0, di,t = 0), vθ(Si,t, di,t−1 = 0, di,t = 1)}
=max{u(Si,t, di,t = 0; θ) + ν0

i,t + βiEtVθ(Si,t+1|Si,t, di,t = 0),

u(Si,t, di,t = 1; θ)− C(Si,t; θ) + ν1
i,t + βiEtVθ(Si,t+1|Si,t, di,t = 1)}.

The representation of value function for packages with Python 3 support is more
straight-forward because the irreversibility condition implies that no further decisions
are being made:

Vθ(Si,t, di,t−1 = 1) (5)
=vθ(Si,t, di,t−1 = 1, di,t = 1)

=Et{
∞∑
τ=0

βτ
i

(
u(Si,t+τ , di,t+τ = 1; θ) + ν1

i,t+τ

)
|Si,t; θ}

=
∞∑
τ=0

βτ
i

∫ (
u(Si,t+τ , di,t+τ = 1; θ) + ν1

i,t+τ

)
dFθ(Si,t+1|Si,t).

We assume that νdi,t
i,t are independently and identically distributed according to the

type I extreme value distribution. Then the expected value function EtVθ(Si,t+1|Si,t, di,t)
can be calculated using the following equation:

EtVθ(Si,t+1|Si,t, di,t = 0) (6)

=

∫
Vθ(Si,t+1, di,t = 0)dFθ(Si,t+1|Si,t, di,t = 0)

=

∫
log{

∑
di,t+1∈{0,1}

exp(vθ(Si,t+1, di,t = 0, di,t+1))}dFθ(Si,t+1|Si,t, di,t = 0)

EtVθ(Si,t+1|Si,t, di,t = 1) (7)

=

∫
Vθ(Si,t+1, di,t = 1)dFθ(Si,t+1|Si,t, di,t = 1)

=
∞∑
τ=1

βτ−1
i

∫ (
u(Si,t+τ , di,t+τ = 1; θ) + ν1

i,t+τ

)
dFθ(Si,t+1|Si,t, di,t = 1).
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Given the parameter θ and the transition dynamics described by Fθ, EV is iter-
ated until convergence, which is then used to calculate choice-specific value functions
vθ(Si,t, di,t−1 = 0, di,t). The choice-specific value functions allow us to compute the
predicted probability of adopting Python 3 using the standard logit formula:

P (di,t = 1|Si,t, di,t−1 = 0; θ) =
vθ(Si,t, di,t−1 = 0, di,t = 1)∑
d′∈{0,1} vθ(Si,t, di,t−1 = 0, d′)

(8)

P (di,t = 0|Si,t, di,t−1 = 0; θ) =1− P (di,t = 0|Si,t, di,t−1 = 0; θ) (9)
P (di,t = 1|Si,t, di,t−1 = 1; θ) =1 (10)
P (di,t = 0|Si,t, di,t−1 = 1; θ) =0. (11)

4.2 Payoff Function

As discussed in Section 2, for any of the most commonly known motivations to
contribute to the OSS development, contributors should prefer having more user down-
loads. Therefore, following the literature of OSS (Fershtman and Gandal (2011) and
Fershtman and Gandal (2008)), we model the payoff of package developers as a func-
tion of user downloads. Denote xi,t as the logarithm of the total number of times a
package i is downloaded by users in period t. We specify the payoff function as a linear
function of user downloads:

u(Si,t, di,t; θ) = αx xi,t(xi,t−1, di,t; θ). (12)

Furthermore, we assume that the evolution of the demand follows a first-order
Markov process:25

xi,t = ρi + ρ1 · xi,t−1 + ρ2 · dsi,t + ρ3 · di,t · rt + ϵi,t, (13)

where d indicates a package i’s adoption status/decision di,t; dsi,t is the number of
packages that specify i as their dependency package, that is, the number of i’s down-
stream packages; rt is the current Python 3 adoption rate among all packages; ρi is the
fixed effect for each package i; and ϵ0i,t, ϵ

1
i,t are two white noises that are normally and

independently distributed with mean 0 and variance σ2
ϵ .26

There are several elements of heterogeneity captured in the model apart from the
unobserved error terms. The first one is the fixed effects ρi. It captures heterogeneity in
popularity and underlying motives of package development.27 The second heterogeneity
comes from user downloads. Note that the download variable xi,t is in logarithm terms.
A change in other terms would translate to different levels of downloads with different

25The previous Working Paper versions have adopted a slightly different demand process without
fixed effects. The results do not change qualitatively.

26In the estimation of the user downloads function, we assume that package developers can perfectly
predict the future values of rt.

27For example, some packages are hobby projects without regular maintenance, and others can be
serious software development with a larger team behind it.
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popularity. For example, a package with a large existing Python 2 user base is also
more likely to have a significant additional number of potential users on Python 3.
The adoption by an important package with many downstream packages may cause a
cascade effect for many others, and such a package itself also benefits from the direct
downloads from it. The third heterogeneity lies in the temporal dimension.Adoption
benefits change over time and are reflected mainly through the di,t · rt term. When
Python 3 is not widely adopted, the potential Python 3 user base is small; thus, a
package doesn’t gain many downloads from adopting Python 3.

We model user demand with a parsimonious first-order Markov process instead of
a structural model of user adoption, mostly due to data limitations. We only observe
the total number of downloads for each file of a package, which is not equivalent to the
user base because a user can download a package multiple times. More importantly,
without user identifiers such as IP addresses, there is no way to identify the Python
adoption decision for each individual. We assume symmetric information in terms
of user downloads because package developers have no more download statistics than
econometricians. Lastly, the parsimonious first-order Markov process can well capture
the variations of downloads in the data (see Section 7).

4.3 Adoption Cost

We model the cost function as a function of an agent’s decision di,t, lines of code
si,t, and the number of incompatible dependencies µi,t (adjusted by an “importance”
measure of that dependency). The switching cost is defined as below:

Ci,t = c0 + αµ µi,t + αs si,t, (14)

and we further assume that µi,t is specified as the following:

µi,t =
∑
j∈Ui

1{dj,t = 0} sj,t, (15)

meaning the number of incompatible dependencies is weighted by package sizes. We
prefer this to the raw number of dependencies because, in reality, the cost to deal with
an incompatible dependency may be heterogeneous. For example, it may be easier to
find a dependency alternative for another small dependency compared to a large one.

The fixed component c0 of the adoption cost captures all other costs not captured
by µi,t and si,t. One important component is the difference between Python 2 and 3,
or the difficulty level for a developer to learn Python 3. Since it is a one-time cost, c0
also includes the present value of future maintenance costs.

Assumption 1. At time t, a package i observes Python 3 adoption decisions made by
its dependencies, namely, dj,t for all j ∈ Ui,t.
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This is an assumption on the information set available to a package when making
decisions. In particular, the question is whether package i observes the adoption deci-
sions of its dependencies j ∈ Ui,t before making its own adoption decision. If yes (as in
Assumption 1), then it is more appropriate to model a sequential-move game; if not,
then a simultaneous-move game would be more appropriate.

We prefer the sequential-move assumption instead of a simultaneous one for the
following reasons. First, upstream packages tend to be the more popular ones that
often pre-announce their plans for future releases, including the Python 3 adoption
decision. Second, a downstream package is likely to pay close attention to decisions
made by its dependencies because it directly depends on them in order to work. Thus,
it is likely that the Python 3 adoption decisions of upstream packages are readily
available to downstream packages as soon as they are made.

Assumption 1 implies that upstream packages make decisions first, followed by the
downstream packages. The exact order of play in the model is defined based on the
network structures, and will be specified in detail in Section 6.1.

We do not think that a simultaneous-move assumption and a sequential one would
produce significantly different results. The only observations that cause different esti-
mates are cases when a package and its dependencies adopt Python 3 in the same time
period, which does not represent a large share in the data.28

Assumption 2. A package i does not explicitly consider responses from its downstream
packages k where i ∈ Uk,t.29

A package i cares about the responses from its downstream packages insofar as it
cares about more user downloads of its own package. The mean effect is captured
and approximated by the parsimonious first-order Markov process of user downloads,
which includes both package and network characteristics.30 Assumption 2 implies that
a package does not explicitly include the response function of its downstream packages
in its utility function. Without explicitly modeling the interaction of upstream and
downstream packages, assumption 2 significantly reduces the computational burden.

We believe that Assumption 2 is reasonable because upstream packages tend to
experience significantly more downloads than their downstream counterparts. In other
words, it is likely that indirect downloads through downstream packages account for a

28If package i observes dj,t = 1, then the perceived adoption cost is much smaller than the case
without observing dj,t. In this case, the cost parameter with a simultaneous-move model is smaller
compared to a sequential-move version.

29In Section 5.1, we relax Assumption 2 by allowing each package to predict the adoption decisions
of its downstream packages. More details can be found in Section 5.1.

30For example, a package might receive much of its downloads indirectly through a popular down-
stream package, thus having stronger incentive to adopt Python 3 earlier due to the fear of being
dropped as a dependency. Such strategic interactions are not explicitly modeled, but the effects are
implicitly approximated in the first-order Markov process.
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small portion of total user downloads.31 Moreover, an upstream package often has many
downstream packages and is unlikely to track all the downstream packages dependent
on it.

4.4 State Variables and Transition Probability

As mentioned in the previous sections, one important component of the adop-
tion cost comes from the dependency network when the dependency packages lack
Python 3 support, which is represented by the last component of the state variables
{dj,t, Sj,t}j∈Ui,t

. We model a dynamic model of sequential decisions where upstream
packages make adoption decisions before downstream packages, and downstream pack-
ages observe the decisions made by upstream packages at time t, namely dj,t.

Package i cares about the decisions and states of its dependencies {dj,t, Sj,t}j∈Ui,t

insofar as it cares about its own adoption cost (a function of µi,t), as well as its future
evolution given the current states. The law of motion of µi,t can be expressed in the
following way:

P(µi,t+1 = µ′|µi,t = µ, {dj,t, Sj,t}j∈Ui,t
; θ)

= P(µ′|µ, {dj,t, Sj,t}j∈Ui,t
; θ), (16)

where µ ≥ µ′, meaning that the adoption cost in future periods might be lower. The
component {dj,t, Sj,t}j∈Ui,t

is important to predict the future adoption probabilities of
dependency j. Denote the probability of dependency j adopting and not adopting
Python 3 as p̂1j,t+1 = P(dj,t+1 = 1|dj,t = 0, Sj,t; θ) and p̂0j,t+1 = P(dj,t+1 = 0|dj,t =
0, Sj,t; θ), respectively. Further, we define the set of dependencies without Python 3
support as Ωi,t ≡ {j ∈ Ui,t, dj,t = 0}. Then we can simplify equation 16 as:

P(µ′|µ, {p̂j,t+1}j∈Ωi,t
; θ). (17)

Note that µ is defined as the number of incompatible dependencies weighted by the
package size. It is a deterministic function of the set of incompatible dependencies.
Thus the transition probability of µ is equivalent to that of the set of incompatible
dependencies. Define Oi,t as the power set of Ωi,t that contains all possible subsets of
Ωi,t, then the equations above can be further simplified as:

P(o′
∣∣ Ωi,t, {p̂j,t+1}j∈Ωi,t

; θ)

=
∏
j∈o′

p̂0j,t+1

∏
j∈Ωi,t\o′

p̂1j,t+1, (18)

where o′ ∈ Oi,t, µ =
∑

j∈Ωi,t sj,t, and µ′ =
∑

j∈o′ sj,t.

31Unfortunately, neither the econometrician nor the packages have a clear knowledge regarding the
portion of downloads coming from direct versus indirect channels. The data limitation is another
reason why we make such an assumption.
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4.5 Transition Matrix

The calculation of EV in equation 7 depends crucially on the specification of the
transition matrix, or PS′|S. In our model, the utility function is mainly governed by two
variables, namely, xi,t, the measure of downloads or popularity, and µi,t, the measure
of adoption cost due to incompatible dependencies. The construction of the transition
matrix depends on the joint law of motion of xi,t and µi,t.

The law of motion of xi,t is relatively simple. We assume that it follows a first-order
Markov process specified in equation 13, with the parameter values estimated outside
of the value function iteration. In contrast, the law of motion of µi,t is much more
difficult.

One of the most important trade-offs for package i to adopt Python 3 today at t
versus future periods t+τ is the decreasing adoption cost due to the decreasing number
of dependencies without Python 3 support over time. Therefore, the solution to the
dynamic adoption model depends on the calculation of future adoption probabilities
for each of the dependencies.

The calculation is a formidable task due to the nature of the nested dependency
network. This computational difficulty can be illustrated by forecasting the Python 3
adoption probability for each of package i’s dependency j ∈ Ui,t at time t+ 1:

p̂1j,t+1 =

∫
Sj,t+1

P(dj,t+1 = 1|Sj,t+1, dj,t = 0, zj; θ)dP(Sj,t+1|Sj,t, dj,t = 0, zj; θ). (19)

The integral can then be computed through a simulation of future states Sj,t+1. Let
Sm
j,t+1 be the mth simulation, then the value of p̂1j,t+1 can be obtained by:

p̂1j,t+1 =
1

M

M∑
m=1

P(dj,t+1 = 1|Sm
j,t+1, dj,t = 0, zj; θ). (20)

This simulation method can be very computationally intensive. Note that the
nested states are expressed as (xi,t−1, di,t−1, νi,t, {dj,t, Sj,t}j∈Ui,t

). The simulation of the
states of package j requires the simulation of the states of j’s dependency, k ∈ Uj,t+1,
as well as the states of k’s dependencies, and so on. Any slight changes in any of the
linked dependencies, or the dependencies of each dependency, can affect pj,t. In this
way, the full solution approach by Rust (1987) is no longer feasible due to the curse of
dimensionality problem. In fact, with the 3,102 packages and 13,056 observations, it
is simpler to build the transition matrix dynamically for each package i at each time
period t. In Section 6, we list the detailed steps outlining how to compute pj,t for
j ∈ Ωi,t given the dependency network.

A transition matrix used for the dynamic programming problem includes the tran-
sition probability, not only from the current state to the next but also from each of the
possible states to all other states. Given the state Si,t, package i calculates p̂1j,t+τ for
each of j ∈ Ωi,t and τ ∈ N.
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Given the transition probability specified in equation 18, the full transition matrix
needed to calculate EV (S, d = 0; θ) can be specified as the following:

P (o′ ∈ Oi,t|o ∈ Oi,t) =

{
0 if o ⊈ o′∏

j∈o′ p̂
0
j,t

∏
j∈o\o′ p̂

1
j,t if o ⊆ o′

. (21)

The calculation of the transition matrix, as specified in equation 21, can be illus-
trated using the same example in Section 4.4. Recall that the set of dependencies
without Python 3 support is Ωi,t = {A,B}. The adoption probability of A and B
at time t can be calculated by package i. Assume that p̂1A,t+1 = a and p̂1B,t+1 = b.
The powerset of Ωi,t is Oi,t = {∅, {A}, {B}, {A,B}}, and O0

i,t = {∅}. Therefore, the
transition matrix of µ can be calculated using equation 21:

TM(µi,t) =

{A,B} {A} {B} ∅


{A,B} (1− a)(1− b) a(1− b) (1− a)b ab
{A} 0 1− a 0 a
{B} 0 0 1− b b
∅ 0 0 0 1

.

The corresponding value of µ for each row (or column) is sA + sB, sA, sB, 0, re-
spectively. By construction, the transition matrix considers both the number and the
identities of dependencies that are without Python 3 support. For example, the situa-
tion with dependency A being the only one without Python 3 support differs from the
situation when B is the only one. Dependency packages A and B differ not only in their
sizes that result in different values of µi,t but also in other aspects (such as downloads)
that affect their own future adoption probabilities that matter for the optional value
of waiting for package i. The transition matrix calculated using equation 21 considers
all such cases.

5 Model Extensions

5.1 Relaxing Assumption 2

With Assumption 2, a package i does not explicitly consider decisions of its down-
stream packages. In theory, the decisions of downstream packages matter because it
would affect the downloads a package would receive (equation 13). Though it’s un-
likely to be the case in reality due to the large number of downstream packages and
there is no systematic way for a package to know who are the downstream packages
nor where the downloads come from, the assumption can be very restrictive from a
modeling perspective. In this section, we relax Assumption 2 by allowing a package i
to predict decisions of its downstream packages.
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In the baseline model, dsi,t was treated as an exogenous variable taken directly from
the data. Here we endogenize dsi,t in the adoption model by allowing each package i
to predict changes of dsi,t as a result of its own adoption decision di,t.

Denote the set of downstream packages as Di,t = {k|i ∈ Uk,t}, that is to say, all
packages k that use i as dependency. Then we assume package i predicts changes of
its number of downstream packages in the following way:

dsi,t(di,t) =

{
dsi,t−1 if di,t = 1

dsi,t−1 −
∑

k∈Di,t
p1k,t(di,t = 0) if di,t = 0

The increase in computational burden from endogenizing dsi,t can be astronomical,
due to an exponential increase in state space from the interdependency relationship
between upstream and downstream packages. To avoid the computational burden,
we adopt the ideas proposed by Dube, Hitsch and Chintagunta (2010) and Ryan and
Tucker (2011) which stems from Bajari, Benkard and Levin (2007) but with slightly
stronger conditions to estimate dynamic games: We assume each package i do not
perfectly predict the evolution of dsi,t but rather approximate the value by using a
parsimonious logit function to calculate p1k,t(di,t = 0). In particular, p1k,t(di,t = 0) is
approximated by a logit function that is estimated outside of the structural model in
the following way:

p̃1k,t(di,t = 0) ≈ p1k,t(di,t = 0) =
exp (δ0 + δ1xk,t + δ2µk,t(di,t = 0) + δ3sk,t)

1 + exp (δ0 + δ1xk,t + δ2µk,t(di,t = 0) + δ3sk,t)

Another simplifying assumption here is package i’s has a myopoic belief of future
evolutions of di,t, that is to say, package i predicts the change of dsi,t due to its own
adoption decision di,t and we assume dsi,t′ = dsi,t∀t′.

Then, in the structural adoption model, dsi,t now becomes dsi,t(di,t), and if ρ3 > 0
in equation 13, then we should expect dsi,t(di,t = 1) ≥ dsi,t(di,t = 0). That is to say, if
package i doesn’t adopt Python 3, then some of its downstream packages might adopt
Python 3 and drop package i as a dependency. In this case, package i’s number of
downloads would also be affected due to a smaller number of dsi,t.

5.2 Heterogeneous Discount Factor

To capture the heterogeneity in valuation of future utility, we specify the discount
factor βi as a form of Gumbel function B(z′i λ):

βi ≡ B(z′i λ) = 1− e−ez
′
i λ (22)

where z′i λ = λ0 + λ1Releasesi + λ2 Filesi

+ λ3Descriptioni + λ4Classifiersi. (23)

The Gumbel specification has an important advantage in numerical estimation be-
cause, for any value of the argument, z′i λ, B(z′i λ) is by definition bounded within 0 and

20



1, and no further constraints are needed. We further specify z′i λ as a linear function of
several variables that can potentially affect how package developers value future down-
loads but not its Python 3 adoption decisions: Releasesi: average number of releases
per year; Filesi: average number of files contained in each release;32 Descriptioni: av-
erage number of characters used in the description section; and Classifiersi: average
number of classifiers (similar to tags or labels) associated with each package.33

The discount-factor-related parameters λs are identified through the variations of
such variables and the observed adoption decisions. For example, a package with many
“classifiers” is likely to put more weight on the additional downloads as a result of
Python 3 adoption.

6 Identification and Estimation
The parameters of interest in our model are the following:

θ =
{
ρ0, ρ1, ρ2, ρ3, ρ4, ρr︸ ︷︷ ︸

θD

; c0, α
µ, αs, β︸ ︷︷ ︸
θS

}
.

The parameters can be grouped into two subsets: θD and θS. θD includes parameters
of the demand function, the process of user downloads modeled as a first-order Markov
process; θS includes parameters of the supply side, which is the structural model of
technology adoption by package developers.

6.1 Identification

The set of demand-side parameters θD = {ρ0, ρ1, ρ2, ρ3, ρ4, ρr} can be identified from
the variation of xt over time. Following the existing literature of dynamic discrete
choice models (Keane (1994), Keane and Wolpin (1997)), we estimate the Markov
process separately from the structural model of technology adoption for the reason
mentioned in 4.2.34

One major concern is that the estimates of the AR(1) process may suffer from
an endogeneity problem. The AR(1) process is estimated using the evolution of user
downloads as a result of the actual adoption decision. The packages that have adopted
Python 3 may experience a positive persistent demand shock that is unobservable to
the econometrician. In other words, due to the endogeneity issue, the benefit of Python
3 adoption inferred by the AR(1) estimates can be over-exaggerated. To correct the

32For each release of a package, there can be multiple files for different operating systems (Windows,
macOS, Linux, etc.) and for different Python versions.

33Some examples of “Classifiers” include: Environment - Web Environment, Intended Audience -
Science/Research, License - OSI Approved - MIT License, Topic - Internet - WWW/HTTP.

34See Hollenbeck (2017) for similar separate estimation combining reduced-form and structural
models of demand and supply.
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endogeneity problem, we instrument the adoption decision di,t using package charac-
teristics including the number of incompatible dependencies and package size.3536

Then the estimates of the AR(1) process of x are used as inputs for the structural
model of technology adoption. The fixed cost c0, the cost due to the network αµ, and
the cost due to package size αs are identified through the variations of x, µ, s, and the
adoption decisions d.

In most settings of dynamic discrete choice models, the discount factor is not sepa-
rately identified from other parameters (Magnac and Thesmar (2002)). In our setting,
all utilities are measured in terms of user downloads. As a result, αx and βi play a
similar role in the model. The identification of the discount factor requires certain
variations that shift future but not current utility (Abbring and Daljord (2019)). In
theory, such variations can be found in our data: imagine a case where two packages, A
and B, that are identical in every way except for their dependencies are the same size.
In this case, A and B also face identical adoption costs with the same µ. However, due
to differences in other characteristics of their dependencies (such as downloads), the
dependencies can have different future adoption probabilities, which in turn affect the
optional value of waiting for A and B. In practice, however, there are very few cases,
and the identification power from this source is rather weak.37

By fixing the value of αx, we can identify the discount factor through the differ-
ences in package-specific characteristics, which affect package developers’ intertemporal
trade-offs between short-term adoption cost and long-term benefit, which is exoge-
nously given from the demand side. For example, two packages face identical adoption
costs but have a slight difference in user downloads. Assume that the initial differences
in downloads also lead to persistent long-term differences. If such small differences lead
to large discrepancies in their adoption probability, it means that packages are more
patient and vice versa.

In this paper, we fix the value of αx to 1. Note that the demand side of user
downloads is estimated separately. Fixing αx means fixing the current period’s utility
per unit of download.

35The validify of the instrument variables hinges on the assumption that the instruments affect the
cost of adoption, but they do not affect the number of downloads in channels other than the Python
3 adoption decision.

36As a robustness check, we also conducted a two-step estimation approach using a synthetic in-
strumental variable. Given an initial set of AR(1) estimates, we first estimate the model of technology
adoption. Then in the second step, we use the predicted adoption probability as an instrument for
the endogenous variable di,t and re-estimate the AR(1) process. Then the new estimates are fed back
to step 1 to re-estimate the model of technology adoption. Steps 1 and 2 are repeated until all of the
estimates converge to a fixed point.

37That is to say, the nonlinear optimizer still returns reasonable estimates but the objective function
is nearly flat near the solution.
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Figure 5: Example of the Layered Network Representation

6.2 Estimation Method

Our model of technology adoption is estimated using the MLE method. The like-
lihood function is defined as:

l(θ) =
N∏
i=1

Ti∏
t=1

p̂0
1{di,t=0}

i,t p̂1
1{di,t=1}

i,t ,

where p̂1i,t ≡ p̂1(Si,t; θ) as defined in equation 8.
The adoption decision of a package i depends crucially on the adoption status of its

dependencies, which is summarized as µi,t in the utility function. Further, Assumption
1 states that µi,t is known to package i before making decisions at t. It allows us
to model and calculate Python 3 adoption probability for packages sequentially.38 To
do this, we first group all packages into L sets based on their acyclical dependency
relationship: L1,L2,L3, · · · ,LL where Ll is defined as:

Ll = {i|max
j

nji = l − 1 ∀j ∈ N},

where N is the set of all packages and nji is the minimal length of all directed acyclical
graph from package j to i. Figure 5 depicts layered network representation using a
small sample of Python packages.

38Assumption 1 simplifies our model estimation, but only slightly. Compared to a simultaneous-
move version, the set of dependencies without Python 3 support at time t under the current assumption
is weakly smaller, which can alleviate the computational burden in cases where both the upstream
and downstream packages adopt Python 3 in the same time period. Such cases comprise a small
percentage of cases in the data.
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In every time period t, packages in layer 1 decide to adopt Python 3, followed by
those in layer 2, then those in layer 3, . . . , etc. The probability of adopting Python 3
for each of the upstream packages is then used for the decision-making process of the
downstream package, in order to calculate the transition probability of µi,t.

The construction of the state variable requires knowledge of adoption probability
of all of one’s dependencies. The layered estimation approach helps calculate all neces-
sary inputs before solving each package’s dynamic problem. It’s helpful to start with
packages in layer 1 where packages do not have dependencies. For a package i ∈ L1 at
time t, the adoption probability p̂i,t can be calculated by solving the dynamic problem
which requires a transition matrix involving the evolution of the number of downloads
(xi,t). Say the package i decides not to adopt. Although the likelihood calculation
only requires p̂i,t, it’s convenient to calculate p̂i,t′ where t′ = t + 1, t + 2, .... These
adoption probabilities are useful when solving a downstream package’s dynamic prob-
lem. For another package k ∈ L1 at time t, the dynamic problem we need to solve
requires a transition matrix involving both the evolution of the number of downloads
(xk,t) and the weighted number of incompatible-dependencies (µk,t), because package
k needs to predict how µk,t evolves in the future. With the adoption probabilities of
its dependency p̂i,t′ already calculated, we can conveniently construct the transition
matrix following the steps in Section 4.5.

Regarding the timing, we summarize all the variables to six-month periods to fit
our dynamic discrete-choice model. For example, 2013/01/01 to 2013/06/30 is one
period, and 2013/07/01 to 2013/12/31 is another.

Our algorithm begins by setting initial values for θD, which come from the estima-
tion of the AR(1) process of user downloads, specified in equation 13. Estimation then
involves iteration on the four steps, where the mth iteration follows.

Step 1: Estimate Demand Parameters θD Using IV

• Estimate the first-order Markov process of demand function using µi,t and si,t as
IV for di,t (equation 13).

Step 2: Estimation of the Model of Technology Adoption

• Given the estimates of demand function θD and an initial guess of θS:

– for i ∈ L1, build transition matrix for each i, t and calculate p̂1(Si,t; θ)

– for i ∈ L2, given p̂1(Sj,t; θ) ∀j ∈ L1, build transition matrix for each i, t and
calculate p̂1(Si,t; θ)

– for i ∈ L3, given p̂1(Sj,t; θ) ∀j ∈ L1,2, build transition matrix for each i, t
and calculate p̂1(Si,t; θ)

...
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– for i ∈ Ll, given p̂1(Sj,t; θ) ∀j ∈ L1,2,··· ,l−1, build transition matrix for each
i, t and calculate p̂1(Si,t; θ)

...

– for i ∈ LL, given p̂1(Sj,t; θ) ∀j ∈ L1,2,··· ,L−1, build transition matrix for each
i, t and calculate p̂1(Si,t; θ)

• Calculate likelihood function l(θ)

• Update θ such that θ∗S = argmax
θS

l(θS, θD).

7 Results

7.1 Model Estimation

Table 4: Estimation of Download Process (First-Order Markov)

(1) (2)
OLS IV

xi,t−1 0.511*** 0.568***
(0.01) (0.01)

dsi,t 0.326*** 0.384***
(0.02) (0.02)

di,t × rt 0.771*** 0.158***
(0.03) (0.03)

Constant 4.566*** 4.211***
(0.08) (0.02)

N 46476 46476
R2 0.714 0.730

Note: First-stage regression results indicate the instruments are not weak.
Overidentification test (Hansen J test) shows a p-value of 27%.

Table 4 summarizes the parameter estimates of the download process, modeled as a
first-order Markov process specified in equation 13. Column 1 shows results from OLS
regression and column 2 corrects the endogeneity of di,t as explained in Section 6.

Both OLS and IV estimation results indicate heterogeneous effects on downloads
after adopting Python 3. When Python 3 is not yet widely adopted (low rt), a package
with few downstream packages (low dsi,t) may find that Python 3 adoption negatively
affects the number of downloads. It is likely to be due to the time constraint faced
by package developers: more time spent to adopt Python 3 means less time to make
improvements to the existing Python 2 version of the package. However, the incentive
for packages with more downstream packages can be much larger. Once such a package
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adopts Python 3, it clears an important roadblock for its downstream packages and
allows them to adopt Python 3 with less cost. The upstream package itself also benefits
because it gets both direct downloads from end users and indirect downloads through
the installation of its downstream packages. The benefits of such a cascade effect are
captured through dsi,t in this downloads process.

Table 5: Parameter Estimates of Adoption Model (θS)

Cost c0 2.462***
Parameters (0.317)

αµ 0.28***
(0.021)

αs 0.113**
(0.061)

Discount Factor β 0.953***
(0.007)

Log Likelihood -6896.64
Number of Packages 3397
Number of Observations 18917

Table 5 summarizes the estimation results of the structural model of technology
adoption. It lists the parameter estimates of the cost function and the discount factor
in separate parts.

The cost function of adopting Python 3 has three components: 1. fixed adoption
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cost c0; 2. cost to deal with dependencies without Python 3 support αµ · µi,t; and 3.
cost to update one’s own code αs · si,t. Both µi,t and si,t are measured in the unit
of logarithm of file sizes, and packages differ significantly in their sizes. To contrast
the magnitude of the cost components, we plot the distribution of costs due to one
incompatible dependency and updating one’s own package in Figure 6. The average
logarithm of package size for a dependency is 5.05, and the average cost of dealing
with one incompatible dependency is αµ × 5.05 = 1.41. In comparison, the average
size for a package is 4.52, and the average cost of updating one’s code is αs × 4.52 =
0.51, which is approximately one-third of the cost of dealing with one incompatible
dependency. The relative high cost of dealing with one incompatible dependency is
not too surprising. Package developers are more familiar with their own code and less
so with the functionalities provided by a dependency package; thus, manually updating
part of the code from a dependency for one’s own use can be challenging. At the same
time, it is not always easy to find a good alternative package that provides exactly the
same functionality as the existing dependency.39

The estimate of the six-month discount factor is 0.953, which is equivalent to 0.908
at the annual level or 0.992 at the monthly level. This estimate is not substantially dif-
ferent from the estimates of discount factors in other industries (e.g., 0.988 in De Groote
and Verboven (2019)) and very close to the standard monthly discount-factor assump-
tion of 0.99.

7.2 Model Fit

One advantage of the structural model is the ability to run simulations. Through
simulation, we can examine the goodness of fit of our model by comparing the actual
versus simulated adoption rates over time. It can also be considered as cross-validating
our model by comparing auxiliary information from the data and the model.

We run simulations of adoption decisions. Starting from the first period, we simulate
Python 3 adoption decisions for all packages over time. We run the same simulation 100
times and plot the average simulated adoption rate against the actual rate in Figure
7. The simulated adoption curve fits well in the earlier periods but under-predict the
adoption rate by approximately 12% by the end of the sample period.

7.3 Extension Results

Relaxing Assumption 2. The model estimates from relaxing Assumption 2 can
be found in the column (2) of Table 6. The estimates do not differ significantly from
those in the baseline model. This result confirms our prior belief that though packages
should consider the impact of its own decision on its downstream packages in theory,
it’s not a major concern in practice, simply because there is no systematic way for

39In theory, the cost to deal with an incompatible dependency depends on the availability of alter-
native packages. Unfortunately, we are unable to account for this factor in the cost function due to
the lack of a systematic method to identify competing packages.
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Figure 7: Actual vs. Simulated Adoption Rates

a package to know who its downstream packages are and how much of its downloads
come from a downstream package.

Heterogeneity in the discount factor. The rich specification of the discount factor
in equation 23 allows us to examine heterogeneity in future costs and benefits from
adoption across package developers. The estimates can be found in column (3) of
Table 6. Figure 8 plots the histogram of discount factor estimates for all packages. The
two-cluster estimates indicate two types of packages, that is, well-maintained packages
(most of the packages in our data) that seriously consider the intertemporal tradeoffs
and causal or hobby projects where incentives are not captured by our model.

Static model. In comparison with existing literature of social networks, one main
feature of our model is the forward-looking behavior. The tradeoff between the current
versus future benefits and costs is key to the model. To show that the dynamics are not
trivial in our setting, we re-estimate the model by shutting down the dynamics, that
is, impose β = 0. The estimation results are shown in column (4) of Table 6. Figure
9 compares the actual adoption rate to simulated adoption rate from the static and
dynamic models. Overall, the static model performs worse in predicting adoption rate
than the dynamic model. The static model over-predicts adoption by an additional
10% in the earlier periods and under-predicts by an additional 5% in later periods.

8 Counterfactuals
Katz and Shapiro (1985) predict that the success of a new technology and the speed
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Table 6: Comparison of Adoption Parameter Estimates (θS)

(1) (2) (3) (4)
Baseline Ext. Ext. Ext.

Relax Ass.2 βi Static
Cost c0 2.462*** 2.475*** 2.226*** 1.753***
Parameters (0.317) (0.32) (0.311) (0.06)

αµ 0.28*** 0.279*** 0.259*** 0.203***
(0.021) (0.021) (0.023) (0.015)

αs 0.113** 0.121** 0.088** 0.022**
(0.061) (0.059) (0.041) (0.013)

Discount Factor β 0.953*** 0.954***
(0.007) (0.009)

λ0 0.323***
(0.135)

λ1 0.01
(0.012)

λ2 -0.154
(0.346)

λ3 0.018
(0.098)

λ4 0.245***
(0.075)

Log Likelihood -6896.64 -6889.94 -6816.51 -6997.42
Number of Packages 3397 3397 3397 3397
Number of Observations 18917 18917 18917 18917

of technology adoption highly depend on “sponsorship.” A sponsor is an entity that is
willing to make an investment to promote a new technology. There exists such a sponsor
in the Python programming language—namely, Python Software Foundation (PSF).
This is a nonprofit organization that oversees various issues in the Python community,
including the transition from Python 2 to 3. Given a limited amount of resources, it
is critical to understand how to efficiently allocate resources to avoid excess adoption
inertia and promote a faster rate of adoption of Python 3.40

In this section, we examine the effectiveness of two counterfactual policies to pro-
mote faster Python 3 adoption: a lower fixed adoption cost and a scenario without
dependency-incompatibility issues. These policies help us to better understand how
much Python 3 adoption is affected by the various components of the adoption cost. We
first conduct these exercises for both the entire Python community. Then we explore
heterogeneous effects across different sub-communities within Python, the results of

40Excess inertia refers to slow adoption despite the user benefits of new technology (Farrell and
Saloner (1985)).

30



which can help seeking an “optimal” policy of cost subsidies to various sub-communities
within Python.

These counterfactual exercises explore the role of different adoption cost compo-
nents in Python 3 adoption rate. They provide some guidelines of “optimal” promotion
policy to PSF. However, we are unable to measure the exact monetary values of these
policies due to data limitations. Ideally, the adoption cost can be measured by tallying
the labor input related to the adoption decision, such as the time required to learn the
new syntax and update the code to maintain compatibility. Without labor input data,
an alternative method involves measuring changes in the actual code from Python 2
to Python 3 and assume a labor cost to produce those code. Still, the estimates would
highly depend on certain assumptions.41 For these reasons, we abstract away from
measuring the cost of lowering adoption cost by PSF and focus instead on the effect of
different components on the dynamics of Python 3 adoption.

8.1 Lower Adoption Costs

As explained in Section 4.3, the fixed adoption cost comes from multiple sources,
including learning the differences in the language syntax and maintenance cost of future
releases of a package. The reduction of c0 can be achieved in various ways with the
support of PSF. For example, a better automatic conversion tool from Python 2 to
3 and a higher level of compatibility through scheduled deprecation.42 The other
counterfactual scenario is the case without any dependency-incompatibility issues.43

That is to say, a package wanting to adopt Python 3 still has to learn the new syntax
and update its own code, but it is free to use a dependency that supports Python 2
only.44

Figure 11 contrasts the simulated adoption rates from the two counterfactual sce-
narios. In the scenario of halving the fixed portion of the adoption cost (the dash-dotted
line), the adoption rate increased by roughly 10% by the end of 2018. In other words,
the cost reduction can help accelerate by one year from 2018 to 2017. The gap be-
tween the simulated and counterfactual adoption rates is smaller at the beginning, and
it grows and stabilizes by the end of the sample period. The counterfactual result
without incompatible dependency issues shows a different pattern (the dotted line). It
starts off very close to model simulation but the gap grows larger over time. By the

41In the tech industry, the idea of payment based on lines of code is notoriously criticized. In
1990, Microsoft broke off with IBM due to the latter’s use of lines of code to measure programmer
productivity.

42We do not study the optimal compatibility decision made by PSF in this paper. The official
reason for the incompatibility between Python 2 and 3 is the high development cost. In this paper,
we focus on measuring the benefits of a lower adoption cost.

43We thank an anonymous referee for suggesting this counterfactual scenario.
44This has been possible in other programming languages such as Fortran where dependencies can

be written using an incompatible standard. We assume the same in the case of Python, although the
implementation of this idea might be technically difficult.
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Figure 10: Simulated Adoption Rate with Lower Adoption Cost

end of 2018, a counterfactual scenario shows an increase of 18% in adoption rate, or
accelerate the adoption by approximately 1.5 years.

The adoption rates comparison between two counterfactuals is very interesting be-
cause it indicates how the roles of the two cost components change over time. The
fixed adoption cost component is static in that all packages adopting Python 3 have
to pay that cost, regardless of the time or network. The incompatible dependency is
a more dynamic issue in the sense that the dependency network evolves over time.
With more Python packages becoming available and existing packages getting more
functionality, packages are more interconnected over time, and the network starts to
play a larger role in the adoption decisions. To examine the differences between the two
adoption curves, we first calculate the gap between the two curves, and then calculate
the changes of that gap over time. Figure 11 plots the differences of adoption speed
between the two counterfactual scenarios. In other words, it shows how much faster
the second counterfactual predicts compared to the first one in each period. Figure 11
shows a non-monotonic pattern. In early time periods, the two cost reductions have
similar effects to adoption rates. Over time, as packages get more interconnected, the
incompatible-dependency issue becomes a bigger obstacle to stall the adoption process.
In the first half of 2014, a counterfactual without dependency issues predicts 1% addi-
tional adoption rate compared to the case with half fixed adoption cost. Towards the
end of the sample periods, as most fundamental packages have adopted Python 3, the
incompatibility dependency issue becomes less pronounced and the differences between
the two counterfactuals become smaller.
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Figure 11: Differences of Adoption Speed Between Two Counterfactual Scenarios

8.2 Community-Level Targeted Subsidy

The first counterfactual exercise studies the effects of a lower adoption cost for the
whole Python community. In reality, lowering adoption cost for the whole Python pro-
gramming language might be difficult due to a high development cost. An alternative
way to promote Python 3 is through cost subsidies. Python has been used by many
domains, and each forms its own community through specialized packages. Given lim-
ited resources, PSF can focus on providing subsidies to certain communities that are
most reluctant to adopt Python 3 without such a subsidy. In this subsection, we will
investigate how subsidies to one community can affect its adoption rate over time, as
well as its propagation effect on other connected communities.45

8.2.1 Communities in Python

Python is a general-purpose programming language, meaning that it is not designed
for a specific community of users. Rather, it is designed in a flexible way so that users
from any domain can customize it for their own use (for example, data analysis and
web development). The needs of communities are met by third-party packages, most
of which are designed to achieve certain tasks in their specific fields. Those packages
that serve users within a given community tend to be more closely linked through
dependencies.

The Louvain community detection algorithm (Blondel et al. (2008)) helps us to
45Another example of such subsidy can be found in the field of artificial intelligence (AI). AI adoption

can be beneficial in many fields, and government agencies have been allocate funding resources to
promote AI adoption. See “Canada-UK Artificial Intelligence Initiative” for a recent example.
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Figure 12: Python Community through Dependency Network

re-adjust the adjacency matrix, which clusters packages into six major communities.
Figure 12 plots the updated adjacency matrix. Each dot represents a dependency be-
tween two packages, and each square represents a community: a larger one means more
packages and a darker one shows denser links among packages within that community.
Packages are more densely linked within the community and less so across communi-
ties. A handful of packages (those with long vertical lines) are used as dependencies
by many packages across different communities.

Table 7: Package Characteristics by Community

Num of Avg Avg Size Avg Num of Avg Num of
ID Description Packages Downloads (in KB) Dependencies Downstream Pkg

1 database 374 35325 301.851 2.891 2.431
2 cryptography 395 64846 362.081 3.621 2.289
3 web development 684 28189 224.363 2.573 2.215
4 web navigation 405 55461 203.544 2.721 1.982
5 software development 464 32870 368.818 3.194 1.549
6 data analysis 370 16782 777.119 3.091 2.420

Table 7 describes the functionalities and characteristics of packages for each of the
six communities in our study. They vary in size as well as network structure. For
example, a package in the web development community has an average of 2.573 depen-
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dencies and 2.215 downstream packages, whereas the average number of dependencies
doubles the number of downstream packages in software development.

8.2.2 Policy Evaluation

We examine the effectiveness of community-level targeted subsidies on the adoption
rates through both direct effects within that community and indirect effects on other
communities, because communities are all interlinked in different ways. For each com-
munity, we adopt the two cost subsidy policies discussed at the beginning of Section
8: 1. reduce the fixed adoption cost by half; 2. no dependency-incompatibility issues.
We run the simulation of such policies for each of the seven communities 100 times
each. Then we compare the differences between community-level adoption rates with
and without the subsidy.

1 2 3 4 5 6

1 9.04%* 0.44% -0.23% 0.20% 0.25% 1.88%†
2 0.70% 9.80%* -0.39% 0.83%† 0.37% 0.97%
3 0.44% 0.87% 7.52%* 0.04% 0.57% 0.45%
4 0.01% 0.08% -1.67%† 7.73%* -0.39% 0.35%
5 1.01% 0.79% -0.23% 0.42% 7.97%* 0.86%
6 0.14% 0.51% -0.64% -0.13% 0.77% 8.83%*

(a) Half Fixed Adoption Cost

1 2 3 4 5 6

1 18.31%* -0.23% -1.54%† 0.23% -0.24% -0.05%
2 0.34% 22.69%* 0.13% 0.57% 0.40% 0.98%
3 1.69%* 1.80%* 16.90%* 0.26% 1.79%* 1.83%†
4 0.57% 0.36% -0.75% 12.50%* 0.53% 1.76%†
5 -0.84% -0.62% -1.37% 0.06% 14.56%* 1.91%†
6 -0.06% 0.53% -0.07% 0.06% 0.36% 20.70%*

(b) No Incompatible-Dependency Issues

Table 8: Effectiveness of Community-Level Subsidy (Year 8)

Notes: significance level: * 5% † 10%
Each row represents the targeted community that receives a subsidy equal to half of the fixed
adoption cost c0. The column shows the changes of community-level adoption rates.
This table reports results three years after the cost subsidy.

The responses of community-level adoption rates to the two subsidies are reported
in Table 8. Each row represents a targeted community that receives a cost subsidy.
Each column shows the changes of community-level adoption rates. For example, in
the case of the first policy in Table 8.a, the subsidy received by community 1 has
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caused 9.04% higher adoption in community 1 and 0.70% higher in community 2 after
eight years. The diagonal elements represent the within-community effects and the
off-diagonal elements are the across-community effects of the subsidy. Based on the
100 simulations, the statistical significance levels are also reported. A significance of
5% means that more than 95 out of the 100 simulation results show that the policy
changes adoption rates.

Overall, the results show that cost subsidy on a targeted community accelerates
adoption in that community and has heterogeneous effects on other communities. There
are several additional findings that require more discussion. First, the second cost
subsidy policy seems to have a much greater impact on the adoption rate than the
first one. This is consistent with what we saw in Figure 11 that except for earlier time
periods, the incompatible-dependency issue is more pronounced than at least half of
the fixed adoption cost. However, the greater impact is found only for within- not
across-communities. Second, the same cost reduction policy has heterogeneous effects
for adoption rates within the targeted community. Eight years after the subsidy, the
within-community effects range from 7.52% to 9.80Third, the effects on other non-
subsidized communities can be positive or negative. On the one hand, more packages
in the targeted community adopting Python 3 can result in more adoption of their
downstream packages in other communities due to fewer incompatible dependencies.
On the other hand, the subsidy policy increases the adoption probability of packages
in the targeted community; thus, downstream packages in other communities have
more incentive to wait because it is more likely to have a lower adoption cost in the
near future. Most of the significant results in across-community effects are positive,
indicating that the former effect dominates the later for most of the communities.

One natural subsequent question is what is the “optimal” policy? Suppose PSF
wants to maximize the overall Python 3 adoption, but it has only limited resources to
subsidize costs. Which community should then receive it?

The solution to this question needs to account for both the direct effect of subsidy
within that community and the indirect effect on other communities. Moreover, the
temporal dimension also matters. Table 9 summarizes the effectiveness of community-
level subsidy to the targeted community and the overall Python community over time.
Each column represents the targeted community m; ∆ARm represents the difference
between the adoption rate in that year with and without the subsidy, and ∆OverallAR
is the difference of overall adoption rates with and without a community-targeted
subsidy. For example, subsidy to community 1 increases the community-level adoption
by 5.61% and the overall rate by 0.87% after one year.

Table 9 can be viewed as a tabular version of Figure 11 for targeted community-
level cost subsidies. The within-community effects shown in Table 9 is consistent
to what we found in Figure 11 that the effect of the second cost subsidy is smaller
in the early years but becomes more pronounced in later time as packages become
more interlinked. The finding indicates the choice of the “optimal” policy depends on
the temporal dimension. Moreover, the temporal dimension is also important for the
decision of targeted communities. For example, for the first cost subsidy, community
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Table 9: Effectiveness of Community-Level Subsidy

Counterfactual Half Fixed Adoption Cost No Incompatible-Dependency Issues
Target Community 1 2 3 4 5 6 1 2 3 4 5 6

Year 1
∆ARm 5.61% 4.55% 4.60% 6.08% 5.12% 5.20% 4.00% 3.26% 3.97% 4.59% 3.15% 4.36%
∆OverallAR 0.87% 0.86% 0.89% 1.05% 0.85% 0.87% 0.74% 0.68% 0.87% 0.84% 0.60% 0.44%
Year 2
∆ARm 5.46% 6.09% 5.18% 6.90% 6.53% 7.10% 5.69% 6.54% 6.83% 6.73% 4.54% 6.70%
∆OverallAR 0.87% 0.87% 1.28% 0.95% 0.95% 0.74% 0.90% 0.99% 1.64% 1.08% 0.84% 0.60%
Year 3
∆ARm 6.46% 6.25% 5.41% 6.70% 6.53% 7.30% 7.18% 10.15% 9.85% 7.99% 7.12% 8.39%
∆OverallAR 0.92% 0.73% 1.40% 0.85% 1.02% 0.69% 0.94% 1.15% 2.32% 1.10% 1.06% 0.56%
Year 5
∆ARm 7.28% 7.09% 6.84% 7.01% 7.37% 6.51% 13.69% 16.53% 14.85% 10.54% 11.78% 11.23%
∆OverallAR 0.77% 0.76% 1.65% 0.79% 1.23% 0.72% 1.42% 2.02% 3.38% 1.39% 1.81% 1.12%
Year 8
∆ARm 9.04% 9.80% 7.52% 7.73% 7.97% 8.83% 18.31% 22.69% 16.90% 12.50% 14.56% 20.70%
∆OverallAR 1.26% 1.47% 1.77% 0.66% 1.35% 1.22% 1.67% 3.16% 4.34% 1.79% 1.67% 2.80%

Notes: This table summarizes the effectiveness of community-level adoption subsidy on the tar-
geted community and the overall adoption over time. Each column represent a different targeted
community. ∆ARm means the simulated changes in adoption rate in the targeted community;
∆OverallAR means the simulated changes in adoption rate in the whole Python community.

4 seems to be a better target than community 3 in the short term (1.05% vs. 0.89%
in the first year), but the result is reversed in the long term (0.66% vs. 1.77% in the
eighth year).

Certain communities have strong reactions to the subsidy, but adoption in other
communities might stall due to the negative indirect effects. The second cost subsidy
targeting community 1 can raise an additional 18.31% adoption rate after 8 years, but
it has a small impact of 1.67% for the overall adoption, whereas a subsidy to community
3 can achieve a much larger impact of 4.34% despite a smaller within-community effect
of 16.90%.

To further explore the heterogeneous effects on the adoption rates both within
and across-community, we regress the effect on the adoption rates on several net-
work and package characteristics. In particular, we want to explore the relationship
with network density both within and across communities. Within-community density
Densitym follows a standard definition and it is calculated as the number of existing
dependencies divided by the total possible dependencies community m could have.
Across-community density Densitym′,m differs from the standard density definition be-
cause the dependency network is a directed network. Here we denote community m′

as the target community and we’d like to explore the effect on community m. In this
case, we are most interested in cases where packages in community m′ are dependen-
cies of those in m. We count those cases as the actual number of connections, and
we define the total possible connections as the total possible cases where packages
in m are downstream packages. We also control for other community-level package
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Half Fixed Adoption Cost No Incompatible-Dependency Issues

(1) (2) (3) (4) (5) (6)
∆ARm,t ∆ARm,t ∆ARm,t ∆ARm,t ∆ARm,t ∆ARm,t

Densitym 0.359*** 0.662***
(0.12) (0.23)

Densitym′,m 0.970*** 2.106*** 1.417*** 3.152***
(0.22) (0.28) (0.42) (0.54)

Nm -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Xm -0.042*** -0.031*** -0.034*** -0.076*** -0.055*** -0.059***
(0.01) (0.00) (0.00) (0.01) (0.00) (0.00)

Sm -0.062*** -0.044*** -0.042*** -0.114*** -0.082*** -0.079***
(0.01) (0.00) (0.00) (0.02) (0.01) (0.01)

Nm′ -0.000 -0.000
(0.00) (0.00)

Xm′ -0.004** -0.006
(0.00) (0.00)

Sm′ 0.001 0.001
(0.00) (0.01)

Y eart 0.001 0.001 0.001 0.005 0.005** 0.005**
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Y ear2t 0.000 0.000 0.000 -0.000 -0.000 -0.000
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Constant 0.893*** 0.724*** 0.684*** 1.598*** 1.267*** 1.209***
(0.12) (0.06) (0.04) (0.23) (0.12) (0.07)

Target Community m m′ m′ m m′ m′

Model OLS OLS FE OLS OLS FE
N 119 714 714 119 714 714
R2 0.429 0.402 0.431 0.373 0.339 0.357

Table 10: Effectiveness of Counterfactual Policy and Community Characteristics

characteristics such as community size (Nm), average logged downloads (Xm), average
package size (Sm), as well as time trend. Table 10 summarizes the regression results for
the two counterfactual cost subsidy policies. The first column in each section explores
the within-community effects and the second and third columns report the across-
community effects. The dependent variable ∆ARm,t is calculated as the differences
of simulated adoption rates in community m with and without that particular cost
subsidy. The first two columns in each section are pooled-OLS regression and the third
one uses the target community m′ as fixed effects. The within-community estimates
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(columns 1 and 4) shows that more densely-connected communities benefit more from
cost subsidies. For communities with a dense network, packages in that community
are more heavily affected by others and the community can fall into a state with little
adoption. The across-community estimates (columns 2, 3, 5, 6) indicate a community
m benefits more from cost subsidies targeting another community m′ with more of its
dependencies. When many packages in m use packages in m′ as dependencies, pro-
motion in m′ obviously has the largest effect on m′, but it also has a relatively larger
effect on m.

9 Conclusion
Technological changes have been fundamental to economic growth; however, many

new technologies fail to attract quick and widespread adoption. In many cases, fast
adoption of new technologies can be socially beneficial: slow adoption often leads to a
long period with incompatible products, while a more rapid adoption enables consumers
to better enjoy the convenience brought by the latest technology.

Our research explores how technology adoption can be affected by network struc-
tures in a dependency network. We build a structural model of technology adoption to
capture the dynamic compatibility decisions of packages that are interlinked through
a rich dependency network. Our dynamic model allows each agent to anticipate the
future actions of others.

To estimate this adoption model with a network in a feasible fashion, we take advan-
tage of the dependency relationship and propose a novel layered estimation approach,
which allows us to conveniently calculate the necessary elements as inputs for those
in lower layers. This layered estimation approach significantly reduced our computa-
tional burden. The estimation results show the importance of dynamics in our model
setting. Compared with a static one, the dynamic model better captures the decision-
making process generated by the interactions in the network. We find strong evidence
that the adoption decisions of downstream players are significantly affected by their
upstream counterparts. It not only gives a better fit, but also implies the interactive
elements that can only be captured by a structural dynamic model. Through counter-
factual analysis, we investigate the optimal promotion policy to accelerate adoption.
Simulation results show that when providing subsidies to a certain community of the
population, the optimal promotion policy highly depends on the network of both the
targeted community and the interaction with other communities. Moreover, the time
horizon aspect is also an important dimension to evaluate the effectiveness of a policy.
Our counterfactual results imply that policymakers should focus not only on the direct
effect on the recipients of subsidies, but also on the indirect effect on the whole industry
to determine the optimal promotion policy.

Our research studies network structure and technology adoption in the setting of
the Python programming language, a large OSS platform. Without explicit pecuniary
rewards, it helps us to avoid other complications that come with prices and focus
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instead on the pure effects of the network. We believe that our structural framework
can be easily applied to study other industries where prices can be assumed to be fixed.
That being said, our approach might be too restrictive for networks where prices play
a major role. In that sense, our research raises more questions than it can answer. The
answers to these more general questions require not only high-quality data for one or
multiple industries but also the corresponding development of econometric modeling
and estimation methods. We hope that, as one of the first papers to link dynamic
models and dependency networks, our work can contribute to further development in
this direction.
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10 Appendix

10.1 Examples of Python 3 New/Incompatible Features

Python 3 offers many major improvements and new features compared to Python
2. Some are compatible with Python 2 while others are not. The goal of this part of
the Appendix is not to give a comprehensive comparison between Python 2 and 3, but
rather to offer several examples to show the incompatibility between Python 2 and 3.

One of the most fundamental features that makes Python 3 backward incompatible
is the default encoding system; namely, the way Python deals with text.

In Python 2, like all the classic programming languages such as C, Fortran, and
Java, the encoding system is ASCII by default, which can basically only deal with
English characters, punctuation, and digits that can be found on a standard English
keyboard. Non-English characters have to be dealt with in a more complicated way.
For example, typing “café” in Python 2 gives an error: “ascii” codec can’t decode. There
are several solutions to deal with this issue, but all require more advanced knowledge
of the encoding system.

With the growing popularity of the Python programming language, especially
among people who are new to programming, an easier way to deal with non-English
characters has become one of the most requested features. Python 3 fundamentally
changed its way of dealing with text by adopting Unicode as the default encoding sys-
tem. With Python 3, “café” works perfectly well. However, much of the existing code
in Python 2 fails to work, and many manual modifications need to be made.

Another fundamental change is the division of integers. In Python 2, like all other
major programming languages, the division sign “/” means floor division; for example,
5/2 = 2. Such behavior can be confusing for those new to programming. Python 3
changes it to behave more “naturally”: 5/2 = 2.5. The problem is that the old code in
Python 2 works in Python 3 without errors but returns a different result.

10.2 Python Packages

As mentioned in Section 2, a package, in simple terms, can be defined as a collection
of functions that anyone can use to finish more complex tasks. In this section, we
provide a minimal example of Python code to illustrate what one can do with a package
on Python.

A. Python Only
A = [1,2,3]
B = [1,1,0]
result = 0
for i in range(3):

result = result + A[i] * B[i]

B. With Package NumPy
import numpy
A = numpy.array([[1,2,3]])
B = numpy.array([1,1,0])
A @ B
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One can multiply two matrices A =
( 1
2
3

)
and B =

(
1 1 0

)
with dimensions 3x1 and

1x3 respectively using Python by creating two lists, looping through the two lists, and
then summing up the multiplied value; that is, 1×1+2×1+3×0 = 3. Alternatively, one
can use the NumPy package to first define two matrices and then multiply two matricies
directly with A@B. The latter method is more elegant, less prone to error, and more
computationally efficient, especially with large and multi-dimensional matrices.

10.3 Variations in the Raw Data

Table 11: Logistic Regression Model

(1)
di,t

xi,t−1 0.172***
(0.02)

µj,t -0.209***
(0.02)

si,t -0.056***
(0.01)

Constant -3.135***
(0.14)

N 18917
LLH -6958

One way to show data variations essential for identification parameters is through
a simple logistic regression. Table 11 reports results from such a logistic regression
without the complexity of the structural model of adoption. All the estimates are sig-
nificant, indicating that there are nice raw data variations that are helpful for structural
model identification.

10.4 Empirical Evidence for Assumption 1

The main reason for making the sequential-move assumption is that dependency
packages often pre-announce their plans for future releases. The simplest way to ver-
ify this is to calculate the frequency of pre-announcement by upstream/dependency
vs. downstream packages. Such information is often easy to find under the “roadmap”
section on each package’s website. However, this piece of information is not system-
atically recorded in a central depository. At the same time, for a limited number of
packages, the roadmap information is provided under the Description section on PyPI.
Therefore, instead of scraping all the packages’ websites, we simply count the occur-
rences of “roadmap” found in the Description section for all the upstream-downstream
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package pairs. We don’t think this crude measure would differ much from a more
accurate data collection from scraping all the websites.

Table 12: Number of Occurrences with Roadmap Information

Both have roadmap 17
Only upstream/dependency package has roadmap 830
Only downstream package has roadmap 75
Neither has roadmap 5,285

Table 12 lists the number of occurrences for each of the four scenarios. In most cases
(5,285 occurrences), neither the upstream nor the downstream packages has roadmap
information, probably due to the crudeness of this measure (i.e., roadmap information
is provided on their own website instead of on PyPI). Conditional on having some
roadmap information, it is mostly likely the case that only the dependency package
has the information (830 occurrences), which supports the sequential-move assumption
based on the dependency relationships.
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